Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.723
Filtrar
1.
BMC Pediatr ; 24(1): 231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561704

RESUMO

BACKGROUND: Effects of non-pharmaceutical interventions during the pandemic were mainly studied for severe outcomes. Among children, most of the burden of respiratory infections is related to infections which are not medically attended. The perspective on infections in the community setting is necessary to understand the effects of the pandemic on non-pharmaceutical interventions. METHODS: In the unique prospective LoewenKIDS cohort study, we compared the true monthly incidence of self-reported acute respiratory infections (ARI) in about 350 participants (aged 3-4 years old) between October 2019 to March 2020 (pre-pandemic period) and October 2020 to March 2021 (pandemic period). Parents reported children's symptoms using a diary. Parents were asked to take a nasal swab of their child during all respiratory symptoms. We analysed 718 swabs using Multiplex PCR for 25 common respiratory viruses and bacteria. RESULTS: During the pre-pandemic period, on average 44.6% (95% CI: 39.5-49.8%) of children acquired at least one ARI per month compared to 19.9% (95% CI: 11.1-28.7%) during the pandemic period (Incidence Rate Ratio = 0.47; 95% CI: 0.41-0.54). The detection of influenza virus decreased absolute by 96%, respiratory syncytial virus by 65%, metapneumovirus by 95%, parainfluenza virus by 100%, human enterovirus by 96% and human bocavirus by 70% when comparing the pre-pandemic to the pandemic period. However, rhinoviruses were nearly unaffected by NPI. Co-detection (detection of more than one virus in a single symptomatic swab) was common in the pre-pandemic period (222 of 390 samples with viral detection; 56.9%) and substantially less common during the pandemic period (46 of 216 samples; 21.3%). CONCLUSION: Non-pharmaceutical interventions strongly reduced the incidence of all respiratory infections in preschool children but did not affect rhinovirus.


Assuntos
COVID-19 , Metapneumovirus , Infecções Respiratórias , Humanos , Pré-Escolar , Lactente , Estudos de Coortes , Estudos Prospectivos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Rhinovirus
2.
Influenza Other Respir Viruses ; 18(4): e13285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616564

RESUMO

BACKGROUND: Pneumonia is a leading cause of morbidity and mortality in children < 5 years. We describe nasopharyngeal carriage of respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza virus among children with fast-breathing pneumonia in Karachi, Pakistan. METHODS: We performed a cross-sectional analysis of nasopharyngeal swabs from children aged 2-59 months with fast-breathing pneumonia, enrolled in the randomized trial of amoxicillin versus placebo for fast-breathing pneumonia (RETAPP) (NCT02372461) from 2014 to 2016. Swabs were collected using WHO standardized methods, processed at the Aga Khan University, Pakistan. Viral detection was performed using LUMINEX xTAG respiratory viral panel assay and logistic regression identified clinical and sociodemographic predictors. FINDINGS: Of the 1000 children tested, 92.2% (n = 922) were positive for viral carriage. RSV, hMPV, and influenza virus were detected in 59 (6.4%), 56 (6.1%), and 58 (6.3%) children and co-infections in three samples (two RSV-hMPV and one influenza-hMPV). RSV carriage was common in infants (56%), we observed a higher occurrence of fever in children with hMPV and influenza virus (80% and 88%, respectively) and fast breathing in RSV (80%) carriage. RSV carriage was positively associated with a history of fast/difficulty breathing (aOR: 1.96, 95% CI 1.02-3.76) and low oxygen saturation (aOR: 2.52, 95% CI 1.32-4.82), hMPV carriage was positively associated with a complete vaccination status (aOR: 2.22, 95% CI 1.23-4.00) and body temperature ≥ 37.5°C (aOR: 2.34, 95% CI 1.35-4.04) whereas influenza viral carriage was associated with body temperature ≥ 37.5°C (aOR: 4.48, 95% CI 2.53-7.93). CONCLUSION: We observed a high nasopharyngeal viral carriage among children with WHO-defined fast-breathing pneumonia in Pakistan. Fever, difficulty in breathing, hypoxia and vaccination status are important clinical predictors for viral nonsevere community-acquired pneumonia.


Assuntos
Influenza Humana , Metapneumovirus , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Criança , Pré-Escolar , Humanos , Lactente , Estudos Transversais , Febre , Influenza Humana/epidemiologia , Paquistão/epidemiologia , Organização Mundial da Saúde
3.
Sci Rep ; 14(1): 8230, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589437

RESUMO

The human respiratory syncytial virus (hRSV) and the human metapneumovirus (hMPV) are important human respiratory pathogens from the Pneumoviridae family. Both are responsible for severe respiratory tract infections in infants, young children, elderly individuals, adults with chronic medical conditions, and immunocompromised patients. Despite their large impact on human health, vaccines for hRSV were only recently introduced, and only limited treatment options exist. Here we show that Ginkgolic acid (GA), a natural compound from the extract of Ginkgo biloba, with known antiviral properties for several viruses, efficiently inhibits these viruses' infectivity and spread in cultures in a dose-dependent manner. We demonstrate that the drug specifically affects the entry step during the early stages on the viruses' life cycle with no effect on post-entry and late stage events, including viral gene transcription, genome replication, assembly and particles release. We provide evidence that GA acts as an efficient antiviral for members of the Pneumoviridae family and has the potential to be used to treat acute infections.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Salicilatos , Viroses , Criança , Adulto , Lactente , Humanos , Pré-Escolar , Idoso , Metapneumovirus/genética , Vírus Sincicial Respiratório Humano/genética , Antivirais/farmacologia , Antivirais/uso terapêutico
5.
Virol J ; 21(1): 59, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454484

RESUMO

Human metapneumovirus (HMPV) is a newly identified pathogen causing acute respiratory tract infections in young infants worldwide. Since the initial document of HMPV infection in China in 2003, Chinese scientists have made lots of efforts to prevent and control this disease, including developing diagnosis methods, vaccines and antiviral agents against HMPV, as well as conducting epidemiological investigations. However, effective vaccines or special antiviral agents against HMPV are currently not approved, thus developing early diagnosis methods and knowing its epidemiological characteristics will be beneficial for HMPV control. Here, we summarized current research focused on the epidemiological characteristics of HMPV in China and its available detection methods, which will be beneficial to increase the public awareness and disease control in the future.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Vacinas , Lactente , Humanos , Metapneumovirus/genética , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/epidemiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Antivirais , China/epidemiologia
6.
Virus Res ; 343: 199344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431054

RESUMO

BACKGROUND: Human metapneumovirus(hMPV) is one of the most common viruses that cause acute lower respiratory tract infections. Interleukin-1ß (IL-1ß) has been reported to play an important role in multiple virus replication. Patients with hMPV infection have increased levels of IL-1ß which reminds IL-1ß is associated with hMPV infection. However, the mechanism by which IL-1ß affects hMPV replication remains unclear. In this study, we explore the effect of IL-1ß on hMPV replication and investigate its specific mechanism of action. METHODS: We established an hMPV infection model through Human bronchial epithelial cells (16HBE). qRT-PCR and Western Blot were used to detect the expression levels of IL-1ß, cyclic GMP-AMP synthase (cGAS), and interferon stimulating factor (STING). Regulating IL-1ß expression by small interfering RNA (siRNA) or exogenous supplementary to study the influence of hMPV replication. The selective cGAS inhibitor RU.521, G150, and STING inhibitor H-151 were utilized to detect hMPV replication in 16HBE cells. RESULTS: The level of IL-1ß protein increased in a time-dependent and dose-dependent manner after hMPV infection. The mRNA and protein levels of cGAS and STING were significantly up-regulated. Knockdown of IL-1ß could contribute to the decreased viral loads of hMPV. While the exogenous supplement of recombinant human IL-1ß in cells, replication of hMPV was significantly increased. Additionally, the level of cGAS-STING protein expression would be affected by regulating IL-1ß expression. Inhibitors of the cGAS-STING pathway led to a lower level of hMPV replication. CONCLUSION: This study found that IL-1ß could promote hMPV replication through the cGAS-STING pathway, which has the potential to serve as a candidate to fight against hMPV infection, targeting IL-1ß may be an effective new strategy to restrain virus replication.


Assuntos
Metapneumovirus , Humanos , Metapneumovirus/genética , Interleucina-1beta/genética , Transdução de Sinais/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferons
7.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38466095

RESUMO

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Animais , Proteínas Virais/genética , Galinhas , Proteína Sequestossoma-1/genética , Anticorpos Antivirais
8.
Clin Respir J ; 18(3): e13747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529669

RESUMO

INTRODUCTION: Human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are significant contributors to the burden of acute respiratory infections in children, but data on hMPV from Southeast Asia are limited despite its potential for serious disease. This study aimed to compare the clinical presentation, resource utilisation and outcomes between hMPV and RSV infections in hospitalised Malaysian children. METHODS: This retrospective, observational study included children aged ≤12 years old hospitalised with hMPV or RSV, confirmed via direct fluorescent antibody (DFA) methods, between 1 July to 30 October 2022 at Hospital Tuanku Ja'afar Seremban, Malaysia. Demographic, clinical presentation, resource utilisation and outcome data were analysed. Propensity score matching was used to balance cohorts based on key demographic and clinical characteristics. RESULTS: This study included 192 patients, comprising 112 with hMPV and 80 with RSV. hMPV patients were older (median age 20.5 vs. 9.4 months, p < 0.001) and had a higher incidence of comorbidities (24.1% vs. 7.5%, p = 0.003). Fever was more common in the hMPV group (97.3% vs. 73.8%, p < 0.001), but the other clinical manifestations were similar. Postmatching analysis showed higher corticosteroid use in the hMPV group (p = 0.01). No significant differences were observed in the use of other resources, PICU admissions, duration of hospitalisation or mortality rates between both groups. CONCLUSION: hMPV and RSV infections in children share similar clinical manifestations and outcomes, with hMPV affecting older children and showing higher corticosteroid usage. These findings emphasise the need for equal clinical vigilance for both hMPV and RSV in paediatric respiratory infections.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Criança , Lactente , Adolescente , Adulto Jovem , Adulto , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/epidemiologia , Estudos Retrospectivos , Pontuação de Propensão , Infecções Respiratórias/epidemiologia , Corticosteroides
9.
Lancet Microbe ; 5(4): e317-e325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359857

RESUMO

BACKGROUND: There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. METHODS: We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. FINDINGS: Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. INTERPRETATION: Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. FUNDING: Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Teste para COVID-19 , Austrália , Metapneumovirus/genética , Vírus Sincicial Respiratório Humano/genética , Sequenciamento Completo do Genoma
10.
Front Immunol ; 15: 1330209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404579

RESUMO

Introduction: Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods: Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results: We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in ß-diversity and relative abundance at the genus level. Discussion: To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Camundongos , Humanos , Animais , Pré-Escolar , Idoso , Linfócitos T CD8-Positivos , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Imunidade Adaptativa , Inflamação , Imunoglobulina A
12.
PLoS Pathog ; 20(2): e1011840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315735

RESUMO

Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Animais , Camundongos , Humanos , Interferon lambda , Pulmão , Infecções Respiratórias/patologia , Interferons
13.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255903

RESUMO

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metapneumovirus , Humanos , Animais , Gatos , Suínos , Metapneumovirus/genética , Integrina beta1/genética , Galinhas , Anticorpos Antivirais
14.
Infect Control Hosp Epidemiol ; 45(5): 630-634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38234188

RESUMO

OBJECTIVE: Many providers use severe acute respiratory coronavirus virus 2 (SARS-CoV-2) cycle thresholds (Ct values) as approximate measures of viral burden in association with other clinical data to inform decisions about treatment and isolation. We characterized temporal changes in Ct values for non-SARS-CoV-2 respiratory viruses as a first step to determine whether cycle thresholds could play a similar role in the management of non-SARS-CoV-2 respiratory viruses. DESIGN: Retrospective cohort study. SETTING: Brigham and Women's Hospital, Boston. METHODS: We retrospectively identified all adult patients with positive nasopharyngeal PCRs for influenza, respiratory syncytial virus (RSV), parainfluenza, human metapneumovirus (HMPV), rhinovirus, or adenovirus between January 2022 and March 2023. We plotted Ct distributions relative to days since symptom onset, and we assessed whether distributions varied by immunosuppression and other comorbidities. RESULTS: We analyzed 1,863 positive samples: 506 influenza, 502 rhinovirus, 430 RSV, 219 HMPV, 180 parainfluenza, 26 adenovirus. Ct values were generally 25-30 on the day of symptom onset, lower over the ensuing 1-3 days, and progressively higher thereafter with Ct values ≥30 after 1 week for most viruses. Ct values were generally higher and more stable over time for rhinovirus. There was no association between immunocompromised status and median intervals from symptom onset until Ct values were ≥30. CONCLUSIONS: Ct values relative to symptom onset for influenza, RSV, and other non-SARS-CoV-2 respiratory viruses generally mirror patterns seen with SARS-CoV-2. Further data on associations between Ct values and viral viability, transmissibility, host characteristics, and response to treatment for non-SARS-CoV-2 respiratory viruses are needed to determine how clinicians and infection preventionists might integrate Ct values into treatment and isolation decisions.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Viroses , Vírus , Adulto , Humanos , Feminino , SARS-CoV-2 , Estudos Retrospectivos , Viroses/diagnóstico , Vírus Sinciciais Respiratórios , Rhinovirus , Adenoviridae
15.
Pediatr Infect Dis J ; 43(4): e141-e144, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241663

RESUMO

We assessed human metapneumovirus infections in children hospitalized between 2011 and 2023 and compared the strongest pre- and postpandemic seasons. After the COVID-19 pandemic, we observed offseason cases and loss of the alternating pattern of the human metapneumovirus season magnitude. Incidence rate ratio of 0- to 11-month-old versus 12- to 23-month-old children was 2.1 (95% CI: 1.0-4.8) before and 1.3 (95% CI: 0.6-2.9) after the pandemic.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Criança Hospitalizada , Pandemias , Infecções por Paramyxoviridae/epidemiologia , Estações do Ano , Infecções Respiratórias/epidemiologia
16.
Influenza Other Respir Viruses ; 18(1): e13237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38249443

RESUMO

Background: While influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are recognised as a cause of severe illness and mortality, clinical interest for respiratory syncytial virus (RSV), rhinovirus and human metapneumovirus (hMPV) infections is still limited. Methods: We conducted a retrospective database study comparing baseline characteristics and 30-day mortality in a large cohort of adult patients admitted for an overnight stay or longer with an influenza virus (A/B), rhinovirus, hMPV, RSV or SARS-CoV-2 infection. For non-SARS-CoV-2 viruses, data were included for the period July 2017-February 2020. For SARS-CoV-2, data between March 2020 and March 2022 were included. Results: Covariate-adjusted 30-day mortality following RSV, hMPV or rhinovirus infections was substantial (crude mortality 8-10%) and comparable with mortality following hospitalisation with an influenza A virus infection. Mortality following a SARS-CoV-2 infection was consistently higher than for any other respiratory virus, at any point in time (crude mortality 14-25%). Odds of mortality for SARS-CoV-2 compared with influenza A declined from 4.9 to 1.7 over the course of the pandemic. Patients with SARS-CoV-2 infection had less comorbidity than patients with other respiratory virus infections and were more often male. In this cohort, age was related to mortality following hospitalisation, while an association with comorbidity was not apparent. Conclusions: With the exception of SARS-CoV-2 infections, we find the clinical outcome of common respiratory virus infections requiring hospitalisation more similar than often assumed. The observed mortality from SARS-CoV-2 was significantly higher, but the difference with other respiratory viruses became less distinct over time.


Assuntos
COVID-19 , Infecções por Enterovirus , Vírus da Influenza A , Influenza Humana , Metapneumovirus , Vírus Sincicial Respiratório Humano , Adulto , Humanos , Masculino , SARS-CoV-2 , Rhinovirus , Vírus da Influenza B , Influenza Humana/complicações , Influenza Humana/epidemiologia , Estudos Retrospectivos , Hospitalização
17.
Zhonghua Er Ke Za Zhi ; 62(2): 159-164, 2024 Feb 02.
Artigo em Chinês | MEDLINE | ID: mdl-38264816

RESUMO

Objective: To explore the pathogenic agents of acute respiratory infection (ARI) in children in Beijing. Methods: In the cross-sectional study, 3 groups of children from different departments were enrolled from Feb 6th, 2023 (6th week) to May 28th (21th week), 2023, including influenza-like case group from emergency department for nucleic acid testing of influenza virus (Flu) and human metapneumovirus (HMPV), the outpatient ARI group under nucleic acid testing for Flu, respiratory syncytial virus (RSV), adenovirus (ADV), and parainfluenza virus (PIV), and the inpatient ARI group under nucleic acid testing for Flu, RSV, HMPV, ADV, human bocavirus (HBoV), Rhinovirus (Rh), PIV, coronavirus (HCoV), Mycoplasma pneumoniae (Mp) and Chlamydia pneumonia (Cp). Results: There were 320 influenza-like cases enrolled, including 192 males and 128 females, aged 4.7 (3.6, 6.9) years, and 117 cases (36.6%) positive for Flu A, which contained similar proportion of pandemic H1N1 (H1N1) 47.0% (55/117) and H3N2 53.0% (62/117), and 13 cases for HMPV 4.1% (13/320). The rate of Flu reached its peak at the 10th week, with H1N1 as the predominant one from the 6th to 9th week (10.0%-50.0%) and then H3N2 from the 10th to 16th week (15.0%-90.0%). HMPV was detected from the 15th week 5.0% (1/20), and then reached to 30.0% (6/20) at the 20th week. In the outpatient ARI group, 7 573 were enrolled, including 4 131 males and 3 442 females, aged 4.0 (2.1, 5.3) years, and the highest positive rate for RSV 32.9% (2 491/7 573), followed by Flu A 12.1% (915/7 573). The dominant one was Flu A in weeks 6-14 (23.2%-74.7%), then RSV in the 15th week 24.8% (36/145). In the inpatient ARI group, 1 391 patients were enrolled, including 804 males and 587 females, aged 3.3 (0.4, 5.8) years, and the highest positive rate for Rh 18.7% (260/1 391), followed by RSV 12.4% (173/1 391), Flu A 10.2% (142/1 391, of which 116 cases (81.7%) were H1N1, and 26 cases (18.3%) were H3N2) and HMPV 3.1% (43/1 391). H1N1 was detected from the 7th week 10% (6/60), to peak in the 11th week 31.8% (21/66). H3N2 was detected from the 8th week 1.5% (1/68), and then kept in low level. The proportion of H1N1 among Flu was 81.7% (116/142) in the inpatient ARI group. RSV was detected from 12th week 1.3% (1/80), reaching 30.4% (35/115) at 19th week. The positive rate of HMPV reached 12.1% (14/116) at 21th week. Conclusions: In the spring of 2023, the first one in Beijing is the Flu epidemic, with H1N1 being the predominant one in the early stage and H3N2 in the later stage. Then, there is a postponed RSV epidemic and an increased HMPV detection. In addition, nucleic acid testing for outpatient children should be strengthened to provide early warning of epidemics.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Metapneumovirus , Ácidos Nucleicos , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Masculino , Feminino , Criança , Humanos , Lactente , Influenza Humana/epidemiologia , Pequim/epidemiologia , Estudos Transversais , Vírus da Influenza A Subtipo H3N2 , Infecções Respiratórias/epidemiologia , Adenoviridae , Infecções por Vírus Respiratório Sincicial/epidemiologia
18.
mSphere ; 9(1): e0057023, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197640

RESUMO

Human metapneumovirus (HMPV) is a negative-sense single-stranded RNA virus in the Pneumoviridae family and a leading cause of acute upper and lower respiratory infections, particularly in children, immunocompromised patients, and the elderly. Although nearly every person is infected with HMPV during early childhood, re-infections occur often, highlighting difficulty in building long-term immunity. Inflammatory responses, including PD-1-mediated impairment of virus-specific CD8+ T cells (TCD8), contribute to HMPV disease severity. HMPV strains are divided into four lineages: A1, A2, B1, and B2. However, little is known about immune responses to different viral subtypes. Here, we characterize responses to four HMPV clinical isolates-TN/94-344 (A1), TN/94-49 (A2), C2-202 (B1), and TN/96-35 (B2)-in vivo in C57BL/6 (B6) mice. TN/94-49 was avirulent, while TN/94-344, C2-202, and TN/96-35 showed varying degrees of weight loss and clinical disease. Differences in disease did not correlate to virus burden in upper or lower tracts. TN/94-49 HMPV exhibited highest nose titers and delayed lung clearance. Cytokine profiles differed between HMPV isolates, with TN/96-35 inducing the broadest lung inflammatory cytokines. TN/96-35 also showed lower HMPV burden and less weight loss than other virulent isolates, suggesting a more efficient antiviral response. Interestingly, disease correlated with higher expression of T-cell chemoattractant CXCL9. All isolates elicited PD-1 upregulation and decreased IFNγ and CD107a expression in virus-specific TCD8, with little difference between HMPV subtypes. This work uncovers previously uncharacterized variations in immune responses to clinical HMPV isolates of different lineages.IMPORTANCEThis study extensively explored differences in T-cell-mediated immunity between human metapneumovirus (HMPV) clinical isolates. Much existing HMPV research has been done with strains passaged extensively in cell lines, likely acquiring mutations advantageous to in vitro replication. Clinical isolates are collected directly from human patients and have undergone <10 passages, serving as more physiologically relevant models of HMPV infection. Additionally, existing animal studies of HMPV disease mainly focus on lung pathogenesis, while HMPV infects both upper and lower airways of humans. This work highlights distinct differences in HMPV burden in upper and lower tracts between clinical isolates. Lastly, this study uniquely explores differences in host immunity between all four HMPV genetic lineages. The predominant HMPV subtype in circulation varies seasonally; thus, understanding host responses to all subgroups is critical for developing effective HMPV vaccines.


Assuntos
Metapneumovirus , Pré-Escolar , Criança , Humanos , Camundongos , Animais , Idoso , Metapneumovirus/fisiologia , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Camundongos Endogâmicos C57BL , Pulmão/patologia , Redução de Peso
19.
Infect Dis Clin North Am ; 38(1): 163-182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280762

RESUMO

Viral pneumonia is usually community acquired and caused by influenza, parainfluenza, respiratory syncytial virus, human metapneumovirus, and adenovirus. Many of these infections are airway centric and chest imaging demonstrates bronchiolitis and bronchopneumonia, With the exception of adenovirus infections, the presence of lobar consolidation usually suggests bacterial coinfection. Community-acquired viral pathogens can cause more severe pneumonia in immunocompromised hosts, who are also susceptible to CMV and varicella infection. These latter 2 pathogens are less likely to manifest the striking airway-centric pattern. Airway-centric pattern is distinctly uncommon in Hantavirus pulmonary syndrome, a rare environmentally acquired infection with high mortality.


Assuntos
Infecções por Adenoviridae , Infecções Comunitárias Adquiridas , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Pneumonia Viral , Infecções Respiratórias , Humanos , Tomografia Computadorizada por Raios X/métodos , Influenza Humana/complicações
20.
mSphere ; 9(2): e0074323, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265200

RESUMO

Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE: Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Humanos , Animais , Metapneumovirus/fisiologia , Citologia , Replicação Viral , Infecções por Paramyxoviridae/patologia , Epitélio , Macaca , Tropismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...